Perspective for Java Programmer's Manual
Chapter 3. Using Perspective for Java

FORMATTING NUMBERS

Perspective supports three methods for defining the format of data text and numeric axis labels that are displayed in a chart: XE "Number Formats"

1)
you may select from one of fifteen preset patterns using a ...Text/LabelFormat property

2)
you may define a standard Java format pattern using one of the ...Text/LabelFormatPattern properties.

3)
The NumberFormatCallback Interface

Preset Formats

The following ...Format properties are used to select one of the fifteen preset patterns or to tell the charting engine that a format pattern will be used: XE "Number Formats:Preset"

DataTextFormat (-1...17)

PieFeelerTextFormat (-1...17)

PieRingTotalFormat (-1...17)

X1LabelFormat (-1...17)

Y1LabelFormat (-1...17)

Y2LabelFormat (-1...17)

When these properties are used, the -1 value tells the charting engine that the format will be defined by one of the ...FormatPattern properties. A value in the range 0...17 selects one of the following formats:

Value
Format (Example)

-1
Use the pattern defined by DataTextFormatPattern

1=
(Example: 123 = 123)

2=
#% (Example: 123 = 12,300%)

3=
#.#% (Example: 123 = 12,300.0%)

4=
#.##% (Example: 123 = 12,300.00%)

5=
$#.## (Example: 123 = $123.00)

6=
$# (Example: 123 = $123)

7=
#K (Example: 1,234 = 1K)

8=
$#K (Example: 1,234 = $1K)

9=
#M (Example: 1,234,567 = 1M)

10=
$#M (Example: 1,234,567 = $1M)

11=
#B (Example: 1,234,567,891 = 1B)

12=
$#B (Example: 1,234,567,891 = $1B)

13=
#T (Example: 1,234,567,891,234 = 1T)

14=
$#T (Example: 1,234,567,891,234 = $1T)

15=
show number with thousand separators no decimals (Example: 1,234=1K)

16=
show number with thousand separators two decimals (Example: 1,234=1.23K)

17=
General currency format for current Locale

Example:
The following example code selects the dollar format for data text labels:

setDataTextFormat(6);

Format Patterns

The following ...FormatPattern properties are used to specify a standard Java format pattern: XE "Number Formats:Patterns"

DataTextFormatPattern (PatternString)

PieFeelerTextFormatPattern (PatternString)

PieRingTotalFormatPattern (PatternString)

X1LabelFormatPattern (PatternString)

Y1LabelFormatPattern (PatternString)

Y2LabelFormatPattern (PatternString)

When these properties are used, the PatternString defines the format of data text or labels in the following format:

pattern:= subpattern{;subpattern}
subpattern:= {prefix}integer{.fraction}{suffix}
prefix:= '\\u0000'..'\\uFFFD' - specialCharacters
suffix:= '\\u0000'..'\\uFFFD' - specialCharacters
integer:= '#'* '0'* '0'
fraction:= '0'* '#'*

Notation:

X*
0 or more instances of X

(X|Y)
either X or Y.

X..Y
any character from X up to Y, inclusive.

S - T
characters in S, except those in T

The first subpattern is for positive numbers. The second (optional) subpattern is for negative numbers. In both cases, a comma (,) can occur inside the integer portion. Here are the special characters used in the parts of the subpattern, with notes on their usage.

0 =
a digit

=
a digit, zero shows as absent

. =
a period (.) is a placeholder for decimal separator

, =
a comma (,) is a placeholder for grouping separator

; =
a semicolon (;) separates formats

-=
a minus sign/dash (-) is the default negative prefix

%=
divide by 100 and show as percentage

x=
any other characters can be used in the prefix or suffix

'=
a single quote (') is used to quote special characters in a prefix or suffix

If there is no explicit negative subpattern, a minus sign (-) is prefixed to the positive form. That is, "0.00" alone is equivalent to "0.00;-0.00". Illegal formats, such as "#.#.#" or mixing '_' and '*' in the same format, will cause an ParseException to be thrown. From that ParseException, you can find the place in the string where the error occurred. The grouping separator is commonly used for thousands, but in some countries for ten-thousands. The interval is a constant number of digits between the grouping characters, such as 100,000,000 or 1,0000,0000. If you supply a pattern with multiple grouping characters, the interval between the last one and the end of the integer is the one that is used. So "#,##,###,####" == "######,####" == "##,####,####".

This class only handles localized digits where the 10 digits are contiguous in Unicode, from 0 to 9.

Special Formatting Using Macros

The following properties can be used in bubble, stock, and scatter charts to apply special formatting to data text values: XE "Number Formats:Macros"

DataTextTemplateBubble(): This property can be used to customize the data text labels and insert MACROS for the actual data any place in a defined string when data text labels are enabled in a bubble chart.

DataTextTemplateHiLo(): This property can be used to customize the data text labels and insert MACROS for the actual data any place in a defined string when data text labels are enabled in a stock chart.

DataTextTemplateScatter(): This property can be used to customize the data text labels and insert MACROS for the actual data any place in a defined string when data text labels are enabled in a scatter chart.

The NumberFormatCallback Interface

The NumberFormatCallback interface represents an abstract Interface to an object that formats the numbers in a chart. You can use these methods in the Perspective to enable and determine if the NumberFormatCallback interface is used: XE "Number Formats:NumberFormatCallback Interface"

getNumberFormatCallBack(); Determine if a NumberFormatCallBack has been assigned with setNumberFormatCallBack().

isNumberFormatCallBack(); Determine if the object is a number format callback.

setNumberFormatCallBack (NumberFormatCallBack numberFormattingObject); Set a number format callback

The provided numberFormattingObject should implement the functions defined in the NumberFormatCallback class to format numeric values in the chart. See the NumberFormatCallback methods in Chapter 10.

FORMATTING TEXT OBJECTS

Use the following properties and methods to format and display text objects in the chart: XE "Text:Formatting"

FontSizeAbsolute: This method can be used to enable/disable the use of absolute font sizing (i.e., the font size is not changed regardless of the virtual coordinates system). If this property is enabled (true), use setFontSize() to specify an absolute font size that will not be changed regardless of the size of the window where it is drawn. If this property is disabled (false), use setFontSizeVC to specify a font size that will be scaled when the window size changes.

get/setFontName(): These methods get and set the font name of a text object.

setFontSize(): Set an absolute font size in points.

get/setFontSizeVC(): These methods get and set the font size in virtual coordinates of a text object. Also see Virtual Coordinates for additional information about the virtual coordinates system.

get/setFontStyle() : These methods get and set the font style (e.g., bold, italic, etc.) of a text object.

get/setTextJustHoriz(): These methods get and set the horizontal justification attribute of a text object in a chart.

get/setTextJustVert(): These methods can be used to determine the vertical justification attribute of a text object in a chart.

get/setTextRotation(): These methods can be used to get and set the rotation attribute of a text object in a chart.

get/setTextString(): These methods can be used to get and set the string of characters assigned to a text object in a chart.

get/setTextWrap(): These methods can be used to get and set the wrapping attribute of a text object in a chart.

AUTOFITTING

These properties and methods can be used to control automatic fitting XE "Autofitting" of text objects in a chart:

AxisTextAutofitMax (value); This property defines the maximum size of axis text in virtual coordinates.

AxisTextAutofitMin (value); This property defines the minimum size of axis text in virtual coordinates.

AxisTextAutofitMode (0...2); This property defines the mode to be used for autofitting axis text.

AxisTextAutofitPercent (0...100%); When AxisTextAutofitMode is set to two, this property defines the percent to be used for autofitting axis text. All Axis text is maintained within AxisTextAutofitPercent of the axis with the smallest font size as determined by Autofit.

FootnoteAutofit (True/False): This property enables (true)/disables (false) automatic fitting of the chart footnote text string. The default value is True.

get/setAutofit(): These methods get and set the auto-fitting attribute of an object in a chart.

O1/O2/X1/Y1/Y2LabelAutofit (True/False): These properties are used to automatically fit/size all text labels on an axis.

O1/O2/X1/Y1/Y2TitleAutofit (True/False): These properties are used to automatically fit/size the title on an axis.

SubtitleAutofit (True/False): This property enables (true) / disables (false) auto-fitting of the chart subtitle string.

TextAutofitMax/TextAutofitMin(Integer): These properties can be used to specify the maximum and minimum font size (in virtual coordinates) that can be used by the charting engine to automatically fit and size label and title objects within their bounding box.

TitleAutofit (True/False): This property enables (true) / disables (false) auto-fitting of the chart title string.

LegendTextAutofit (True/False): This property enables (true) / disables (false) auto-fitting of the legend text. The default value is True.

3D CUBE CHARACTERISTICS

When a 3D XE "3D Cube:Characteristics" graph type is selected with the GraphType property, these properties can be used to control the appearance of the 3D cube:

CubeFocusFactor (0...100): This property sets the focus factor for setting perspective distortion in a 3D chart.

CubeIsometricProjection (True/False): This property enables (true) / disables (false) isometric projection.

CubeLightSourceX/Y/Z (0...100): These properties set the cube light source for the X-, Y, and Z-coordinate (unit space).

CubeRiserInterpolation(); This property controls whether risers in 3D charts are interpolated (faster) or explicitly calculated (more accurate).

CubeSizeX/Y/Z (0...100): These properties can be used to set the size of the 3D cube in the (user) X-, Y-, and Z-directions.

CubeTranslationX/Y/Z (0...100): These properties set the translation of a 3D Cube (in 3D cube coordinates) in the X-, Y-, and Z-direction.

CubeViewerX/Y/Z (0...100): These properties set the viewer location (in 3D coordinates) in the X-, Y-, and Z-direction.

CubeWallThickX/Y/Z (0...100): These properties set the thickness of the 3D-cube wall in the (user) X-, Y-, and Z-direction.

CubeZoomFactor (0...100): This property sets the global scaling factor for zooming in/out.

Display3DFloor (True/False): This property enables/disables the display of the floor of the cube in a 3D chart.

Display3DLeftWall (True/False): This property enables/disables the display of the left wall of the 3D cube.

Display3DRightWall (True/False): This property enables/disables the display of the right wall of the 3D cube.

Viewing3DAnglePreset (-1...15): This property selects an entry in the table of “preset” viewing angles for 3D graphs. XE "Preset Viewing Angles for 3D charts"

 XE "3D Charts:Preset Viewing Angles"

-1 =
Custom (as set by CubeViewerX/Y/Z, CubeWallThickX/Y/Z, etc.)

0=
Standard (the default)

1=
Tall and Skinny

2=
From the Top

3=
Distorted

4=
Short and Fat

5=
Groups Eye

6=
Group Emphasis

7=
Few Series

8=
Few Groups

9=
Distorted Standard

10=
Shorter and Fatter

11=
Thick Wall for Series

12=
Thick Wall Standard

13=
California Special

14=
Blast-O-Vision

Appendix A includes an illustration of each of these preset viewing angles. Also see "3D Grid Lines" and "Riser and Marker Properties" for information about properties that can be used to control the appearance of grid lines and risers in the 3D cube.

PIE CHART PROPERTIES AND METHODS

When a pie chart is selected with the GraphType property, these properties and methods can be used to control attributes that are specific to a pie chart XE "Pie Charts:Methods and Properties" :

OtherPercentage(0...100%); This property sets the percentage at which a slice in a pie chart will be grouped into the "other" slice when the OtherSeries property is enabled.

OtherSeries(true/false); This property enables/disables the bundling of small slices (less than OtherPercentage) into a single slice that is labeled "other".

PieDepth (0...100): This property specifies the depth of the pie crust in a pie chart. The default value is 30.

PieFeelerTextDisplay (0…3): This property enables (true) / disables (false) the display of feelers and data text in a pie chart.

PieFeelerTextFormat (0...14): This property determines the format of values that is drawn next to feelers in a pie chart.

PieLabelDisplay (0…3): This property determines the format of labels displayed next to feelers in a pie chart. The default value is 1.

PieRingSize (0…100): This property determines the size of the ring (inner circle) in a ring pie. The default value is 30.

PieRingTotalDisplay (True/False): This property enables (true) / disables (false) the display of a total value in the center of a pie ring chart.

PieRingTotalFormat: When the PieRingTotalDisplay property is set to true and the total data value is displayed in the center of a ring pie chart, this property sets the format of the data value.

PieRotate (0...359): This property rotates a pie chart a specified number of degrees. The default value is 0.

PiesPerRow (integer): This property specifies the number of pies to be drawn in a row in multi-pie charts. The default value is 2.

PieTilt (0...100): This property tilts a pie chart a specified number of degrees. The default value is 15.

PieBarSeries (0...# of Series in Chart): This property selects the series that will be used to map the bar in a pie-bar chart. The default value is zero.

get/setPieSliceDelete(): These methods get and set a boolean value indicating whether or not slices have been deleted from a pie chart.

get/setPieSliceDetach(): These methods get and set the distance that slices are detached from a pie chart.

restoreAllSlices(): This method restores all detached/deleted slices from a pie chart.

isChartPieType(): This method returns a boolean indicating whether or not the GraphType property is set to one of the pie charts.

STOCK CHART CHARACTERISTICS

When a stock chart is selected with the GraphType property, these properties and methods can be used to control attributes that are specific to a stock chart XE "Stock Charts:Methods and Properties" :

DataTextTemplateHiLo : This property is used to assign a special format macro to data text labels when they are enabled for display in a stock chart.

InterpretAsHLOC: This property is included in Perspective to support backward compatibility with Open-Hi-Lo-Close datasets created for Three |D| Graphics Presentation Graphics Software Development Kit (PGSDK). When this property is true, the data will be interpreted as "High, Low, Open, Close" instead of "Open, High, Low, Close".

Stock52WeekHighValue() : This property gets and sets the 52-week high value assigned to a stock chart.

Stock52WeekLowValue() This property gets and sets the 52-week low value assigned to a stock chart.

Stock52WeekHighDisplay (True/False): This property enables (true) / disables (false) the display of a 52-week high line in a stock chart.

Stock52WeekLowDisplay (True/False): This property enables (true) / disables (false) the display of a 52-week low line in a stock chart.

StockCloseSplitDisplay (True/False): This property enables (true) / disables (false) the display of split risers at the stock close value.

StockCloseTicksDisplay (True/False): This property enables (true) / disables (false) the tick marks at the stock close value.

StockMovingAverageDisplay (True/False): This property enables (true) / disables (false) the display of a moving average line in a stock chart.

StockOpenTicksDisplay (True/False): This property enables (true) / disables (false) the tick marks at the stock open values.

StockTickLength (Integer): This property determines the length of tick marks in a stock chart.

ViewableGroupsStock: This property specifies the maximum number of groups to be imaged in a stock chart.

ViewableSeriesStock: This property specifies the maximum number of series to be imaged in a stock chart.

isChartStockType(): This method returns a boolean indicating whether or not the GraphType property is set to one of the stock charts.

BUBBLE CHART PROPERTIES AND METHODS

The following properties and methods format special items that are only available in bubble charts: XE "Bubble Charts:Properties and Methods"

DataTextTemplateBubble: This property is used to assign a special format macro to data text labels when they are enabled for display in a bubble chart.

QuadrantLineCountX: This property selects a number of quadrant lines on the X-axis in a bubble chart.

QuadrantLineCountY: This property selects a number of quadrant lines on the Y-axis in a bubble chart.

getQuadrantLine(): This method gets the object ID of the quadrant lines in a bubble chart.

getQuadrantLineValueX(): This method gets the vertical location of an X quadrant line.

getQuadrantLineValueY(): This method gets the horizontal location of a Y quadrant line.

setQuadrantLineValueX(): This method sets the vertical location of an X quadrant line.

setQuadrantLineValueY(): This method sets the horizontal location of a Y quadrant line.

COLORS AND SHADING

These properties and methods control the color and shading of objects in a chart: XE "Colors:Properties and Methods"

Autoshading (true/false): This property enables (true) /disables(false) automatic shading of 3D cube walls and riser faces. When depth effect is applied to a 2D chart with DepthRadius, this property also applies shading to the faces of the 2.5D risers.

ColorMode (0...2): This property sets the color mode to be used in the chart (automatic, color-by-series, or color-by-group). For 3D Surface charts, automatic mode will cause the chart to be colored by height. For Bar, Line, and Area charts, automatic mode will color the chart by series if there is more than one series or by groups XE "Groups:ColorMode" if there is only one series The default value is (0, Automatic).

ExactColorByHeight (true/false): This property enables (true) / disables (false) exact coloring by height in spectral maps and 3D surface charts. When this property is enabled (true), the actual data value is used to get a color from the "color-by-height gradient". When this property is disabled (false), the colors on the spectral legend are the only ones used and the data value is compared to determine which of those "buckets" it falls into.

SeriesLooping (1...# of series in graph): This property is used to select the interval at which series color values are repeated. The default setting (32) defines different colors from the first 32 series (0...31). Starting with series 32, the colors are repeated (i.e., series 32...64 have the same colors and 0...31, respectively)..

get/setBorderColor(): These methods get and set the border color of an object.

get/setFillColor(): These methods get and set the fill color of an object in a chart.

get/setFillType(): This method gets and sets the fill type of an object in a chart. The fill type can be a color, gradient, or texture.

getSelectionBorderColor(): This method returns the border color of the currently selected object.

getSelectionFillColor(): This method returns the fill color of the currently selected object.

get/setTransparentBorderColor(): These methods get and set the transparent border color of an object.

get/setTransparentFillColor() : These methods get and set the transparent fill color of an object.

setSeriesBorderColor(): This method can be used to set the border color of risers for a specified series in a chart.

setSeriesFillColor(): This method can be used to set the fill color of risers for a specified series in a chart.

getColorByHeight():When a chart is colored by height (rather than by series or by group), the charting engine chooses the color of quantative data representations based on the data values supplied to the chart. This happens in spectral map charts and in 3D surface charts. If, for example, the data ranges from 7 to 74 and the Y1 axis scale, therefore, goes from 0 to 80, the charting engine might have the color blue assigned to zero, red assigned to 80, and various interpolated shades for values between zero and 80. Note that Spectral Map charts do include a Y1 axis even though it is not visible in the chart. The getColorByHeight() method returns the IdentObj of the "color by height gradient" (in this case a blue to red one). With the object ID, your application can modify the gradient. Its end colors can be changed or the gradient could be made more complex.

When color-by-height is enabled with ColorMode(0) for Spectral Maps and 3D Surface charts and the user selects a data point (spectral marker or surface riser), the charting engine does not highlight the entire series. Instead, all data points that have the same color are highlighted. When the user selects a spectral legend marker, that marker will be highlighted plus the data points of the same value, if any. If the CNTL key is down, ONLY the current selection is highlighted.

When a spectral legend marker is selected, the user can change its color. This modifies the "color-by-height gradient" as follows: 1) if there is already a pin at that point on the gradient, the charting engine changes the color or 2) if not, the charting engine creates a new pin at that point and gives it the specified color.

When a data point is selected, the user can change its color as described above, except that if ExactColorByHeight is false, the charting engine changes the color of the appropriate spectral legend marker's value instead of the color for the exact data value.

Example:
setExactColorByHeight(false);

Using data ranges from 23 to 57, the gradient goes from Blue (20) to Red (60). There are spectral markers at 20, 25, 30, ...60. When the user clicks on marker "20" and changes it to Black, the colors are interpolated from Black (20) to Red (60). When the user clicks on data point "31" and changes its color to Green, a new pin with color Green is added at 0.25 ("31" is colored as if it were "30" and 30 is 25% of the way from 20 to 60). Now the colors are interpolated as follows: Black (20) to Green (30); Green (30) to Red (60).

Example:
setExactColorByHeight(true);

When the user clicks on data point "48" and changes its color to Yellow, a new pin is added at 0.7 (48 is 70% between 20 and 60) with the color Yellow. Now the colors are interpolated as follows: Black (20) to Green (30); Green (30) to Yellow (48); Yellow (48) to Red (60).

The following properties and methods can be used to control the display of shadows XE "Shadows:Properties and Methods" in a chart.

get/setShadowColor() : These methods get and set the color of a shadow applied to an object.

get/setShadowDisplay() : These methods get and set whether or not a drop shadow is displayed for a particular object in a chart.

get/setShadowXOffset() : These methods get and set the offset in the X-direction of a drop shadow for a particular object in a chart.

get/setShadowYOffset(): These methods get and set the offset in the Y-direction of a drop shadow for a particular object in a chart.

ShadowXOffsetDefault (0…100): This property sets the default value for the X-Offset of a drop shadow. The default value is 30.

ShadowYOffsetDefault (0…100): This property sets the default value for the Y-Offset of a drop shadow. The default value is 30.

TEXTURES AND GRADIENTS

These properties and methods can be used to apply textures and gradients to chart objects. To use a gradient XE "Gradients" or texture XE "Textures" , the setFillType() method must select a gradient (i.e., setFillType(2);) or texture (i.e., setFillType(3);).

get/setGradientDirection(): These methods get and set the gradient pin direction.

get/setGradientNumPins(): These methods get and set the number of pins in a gradient.

get/setGradientPinLeftColor(): These methods get and set the left color of the gradient pin.

get/setGradientPinPosition(): These methods get and set the gradient pin position.

get/setGradientPinRightColor(): These methods get and set the right color of the gradient pin.

getTexture(): This method can be used to determine if a texture has been applied to a specific object in a chart or any object in a chart. When a texture name (i.e., a .GIF file name) is supplied is an input parameter, the method identifies whether or not the named texture is applied to any object in the chart. If an Object ID is specified (e.g., getTexture (getSeries(1));), the method will identify whether or not a texture is applied to the specific object.

get/setTextureDisplayMode(): These methods get and set the texture display mode assigned to a specific object or all objects in a chart.

setTextureURL(): This method loads a texture from a file and applies it to object(s) in a chart. The fill type of the object(s) must be set to texture using the setFillType() method (e.g., setFillType (getSeries(1), 3);).

The following example code shows how the setFillType() and texture methods can be used to assign a texture to series one in a chart.

perspective1.setFillType(perspective1.getSeries(1), 3);
perspective1.setTextureDisplayMode(
 perspective1.getSeries(1), 0);
perspective1.setTextureURL(
 perspective1.getSeries(1), "Hard_Rock_Green.gif");

PANNING, ROTATING, AND SCALING

The following properties and methods can be used to pan, rotate, and scale the cube in a 3D chart: XE "3D Charts:Panning, Rotating, and Scaling"

CubeZoomFactor (0...100): This property sets the global scaling factor for zooming in/out.

CubePanX (0...100): This XE "Panning, Rotating, and Scaling a 3D Cube" property pans the 3D chart cube (in 2D virtual coordinates) in the X direction within the chart frame. The default value is 0.

CubePanY (0...100): This property pans the 3D chart cube (in 2D virtual coordinates) in the Y direction within the chart frame. The default value is 0.

get/setCubeRotationMatrix() : These methods get and set the rotation matrix of the cube in a 3D chart.

CHART EDITING CHARACTERISTICS

These properties are used to enable/disable and select the level at which chart objects can be edited in the user interface: XE "Chart Editing"

ReshapeEnable (True/False): This property enables (true) / disables (false) the user's ability to move and resize objects. The default value is True.

ResizeBarMode (True/False): This property enables (true) / disables (false) the user's ability to resize bars in a chart. The default value is False. When this property is enabled, the user can use the control key and mouse to resize the bars in a chart. This action will also adjusts the value associated with the riser.

SelectionEnable (0...5): This property defines the user's ability to select objects in a chart and the operations that can be performed when one or more objects are selected. When SelectionEnable(1) is used, the user can select individual objects (risers, markers, labels, etc.) in a chart. The charting engine highlights each object that is selected. When SelectionEnable(2) is used, the user can only select data-related objects (bars, legends, etc.). The charting engine will highlight the selected data objects and all related objects. When SelectionEnable(3) is used, the user cannot select individual objects. When one object is selected, all related objects will also be selected and highlighted. When SelectionEnable(4) is used, the user can click on a single point and have the chart zoom at the rate of 50% on both axes with the selected point used as the center of the zoom rectangle. When SelectionEnable(5) is used, it allows the user to drag out a rectangle and drill-down on the data within the rectangle area. When this mode is used, a single mouse click will back up one data-zoom level or drill-down. Double click will restore the original un-zoomed data state. See "Data Zooming" in Chapter 6 for more information about using SelectionEnable(4) and SelectionEnable(5).

SelectionEnableMove (True/False): This property enables (true) / disables (false) the user's ability to select and move individual objects (risers, markers, labels, etc.) in a chart. The default value is True.

Also see "Colors and Shading" for more information about how objects are highlighted when they are selected in the user interface.

TOOL TIPS

Perspective provides informational messages strings that can be enabled for display in the user interface when the user positions the mouse pointer over a selectable object in a chart. The following properties and methods control the format, contents, mode, and frequency of these messages in the user interface.

ToolTipDelay (integer): This property gets/sets the delay (in milliseconds) at which tool tips XE "Tool Tips" (CharTips and WidgeTips) will be displayed. The default value is 500.

ToolTipDisplay (True/False): This property enables/disables the display of tool tips. The default value is False

ToolTipMode (True/False): This property toggles CharTips between explicit developer information and user level information.

setDeveloperToolTip (String CustomToolTip): When ToolTipDisplay is enabled (true) and ToolTipMode selects developer mode (true), this method can be used to define a custom tool tip string that will be displayed when the user positions the mouse cursor over an object in a chart. Also see the example program (ToolTipDemoOne) in Appendix G.

setDeveloperToolTipDefault(): This method selects the default developer tool tips provided with the application.

setDynamicToolTip (String, a ToolTip); This method can be used to set the dynamic tool tip to any specific string. If NULL or "" is used, a tool tip will not be generated. Multiple lines may be used in the string definition. See the macros defined below.

setToolTipOff(); This method turns off the generation of events for tool tips.

setUserToolTip (String CustomToolTip): When ToolTipDisplay is enabled (true) and ToolTipMode selects user mode (false), this method can be used to define a custom tool tip string that will be displayed when the user positions the mouse cursor over an object in a chart.

setUserToolTipDefault(): This method selects the default user-mode tool tips provided with the system.

The custom strings defined by setDeveloperToolTip() and setUserToolTip() can include the following macros that are expanded to chart object information:

[GL]
= Group Label

[OD]
= Object Description

[OID]
= Object ID

[OIN]
= Object Instance

[ON]
= Object Name

[R]
= New Line

[SL]
= Series Label

Example:
[ON] is ([OID]) [R] Instance # [OIN]

Also see the ToolTipDemo sample program in Appendix G for an example of how the tool tip properties and methods are used.

NOTE:
You can also use the ToolTipCallback Interface to generate tooltips in your user interface. See ToolTipCallback Methods in Chapter 10 for details.

THE DATA INTERFACE

When the UseSampleData XE "Data:UseSampleData" property is disabled (setUseSampleData(false);), you can use one of the following methods to import and use your own custom data in a chart:

Load Data from a server-based text file

Place data directly within your HTML page

Load data using an SQL query XE "Data:SQL query" to any JDBC/OCBC XE "Data:JDBC/OCBC" compliant database

Pass a data object from another Java class or applet

Register a data object within your own class to "feed" data automatically to Perspective for Java

Set individual values for the chart within your Java code

See Chapter 6 for specific information about loading data into a chart and Perspective properties and methods that support the data interface.

SELECTION LIST METHODS

When the user selects objects in a live chart, the items that are selected may be added to a selection list. Perspective methods let you examine and modify this list and apply attributes to items in the list. The following methods can be used to examine and modify items in the selection list: XE "Selection Lists:Methods"

getSelection(): This method can be used to get the selection list.

getSelectionBorderColor(): If the first item in the selection list has a border, this method can be used to determine the item's border color (if any).

getSelectionFillColor(): If the first item in the selection list is an area object, this method can be used to determine the object's fill color (if any).

getSelectionID(): This method returns the object ID of the currently selected object.

getSelectionLineWidth(): If the first item in the selection list is a line object, this method can be used to determine the width of the line.

getSelectionSize(): This method can be used to determine the size of the currently selected object.

getSelGroup(): This method returns the group number of the currently selected group.

getSelSeries(): This method returns the series number of the currently selected series.

isSelection(): This method can be used to determine whether or not there are any items in the selection list.

isSelectionBorderColorTransparent(): If isSelection() returns true, this method can be used to determine whether or not the first item in the selection list is transparent border color.

isSelectionCube(): If isSelection() returns true, this method can be used to determine whether or not the first item in the selection list is a 3D cube.

isSelectionDataLabel(): If isSelection() returns true, this method can be used to determine whether or not the first item in the selection list is a data label.

isSelectionFillColorTransparent(): If isSelection() returns true, this method can be used to determine whether or not the first item in the selection list is a transparent fill color.

isSelectionGridLine(): If isSelection() returns true, this method can be used to determine whether or not the first item in the selection list is a grid line.

isSelectionLegend(): If isSelection() returns true, this method can be used to determine whether or not the first item in the selection list is the legend area.

isSelectionLine(): If isSelection() returns true, this method can be used to determine whether or not the first item in the selection list is a line object.

isSelectionRiser(): If isSelection() returns true, this method can be used to determine whether or not the first item in the selection list is a riser object.

isSelectionSeriesRelated(): If isSelection() returns true, this method can be used to determine whether or not the first item in the selection list is series related.

isSelectionText(): If isSelection() returns true, this method can be used to determine whether or not the first item in the selection list is a text object.

setSelection(): This method can be used to add an item to the selection list.

The following properties can be used to manipulate how objects are selected in a chart and, therefore, how they are added to the selection list:

SelectionEnable(): This property can be used to enable/disable the user's ability to select objects in a chart and to enable/disable data zooming in the user interface. This property has five selectable options: 1) user can select individual objects (risers, markers, labels, etc.) in a chart, 2) user can only select data-related objects (bars, legends, etc.), 3) user cannot select individual objects, 4) user can click on a single point and have the chart zoom at the rate of 50% on both axes with the selected point used as the center of the zoom rectangle, 5) allows the user to drag out a rectangle and drill-down on the data within the rectangle area.

SelectionEnableMove(): This property can be used to enable/disable the user's ability to select and move objects in a chart.

LOADING AND SAVING FILES

Use these methods to load and save files: XE "Files:Loading and Saving"

public void load (InputStream is, boolean bMerge);

public void load (String szURL, boolean bMerge);

public void save (OutputStream os);

Note that the load methods expect the input stream or URL file to be an ASCII text file that contains Perspective method and property directives. The save() method saves the Perspective method and property directives necessary to recreate the chart in an ASCII text file that can be viewed or edited with a normal text editor.

You may also load and save charts from/to FTP servers using the following methods:

boolean getChartFromFTP();

boolean sendChartToFTP();

boolean sendGIFToFTP();

Use these methods to send a chart to a file or output stream as a GIF image XE "GIF images" :

boolean sendGIFToFile();

boolean sendGIFToStream();

See Chapter 8 for a description of these methods.

DRILL-DOWN AND URLS

The URL XE "URLs" methods allow you to include drill-downs XE "Drill-downs" in HTML files. When the user selects/clicks on an object in a chart where a setURL() is defined, the HTML file provided as an input parameter to the method will automatically be loaded and displayed at the location specified by the setURLTarget(). For example, in the example HTML file below, setURL() selects a different .HTML file for each series/group (slice) in a pie chart. The example setURLTarget() defines the location in the page where each HTML file will be displayed:

URL Methods

get/setURL(): These methods get and set a Universal Resource Locator for any object.

get/setURLTarget(): These methods get/set the Frame Target for URL associated with any specific Object.

Example Drill-Down

<html><head><title>
Pie Drill Down Example</title></head><body><p>
<applet code="TDGChartApplet.class" archive="javaCHARTg.jar" width="400" height="280"><param name="TDGSCRIPT"
value="setTitleString("Pie Chart with Drilldown");
setSubtitleString("Click on the
slices to see a description");
setGraphType(55);
setSeriesLabelArray("Monday", "Tuesday","Wednesday", "Thursday","Friday");
setDataSeries(35.00);
setDataSeries(27.00);
setDataSeries(15.00);
setDataSeries(17.00);
setDataSeries(27.00);
setURL(0,0,"series0.html");
setURL(1, 0,"series1.html");
setURL(2, 0,"series2.html");
setURL(3, 0,"series3.html");
setURL(4, 0,"series4.html");
setURLTarget(0,0, "Bottom");
setURLTarget(1,0, "Bottom");
setURLTarget(2,0, "Bottom");
setURLTarget(3,0, "Bottom");
setURLTarget(4,0, "Bottom");
setToolTipDisplay(1);
"></applet></p><p>

Show the Series2 page by force </p></body></html>

3-58
Three |D| Graphics (04.2000)
Three |D| Graphics (04.2000)
3-59

